The Apollo Challenger Columbia Lessons Learned Program

One of the most positive outgrowths from the Columbia accident remains the Debris Loan Program. I have sung its praise in earlier posts, and for good reason. Another initiative underway has equal or greater positive potential.

Something more meaningful than studying the debris in order to design safer spacecraft? Yes. What about something to deal with some of the common root causes of America’s manned spaceflight accidents? To deal with them BEFORE they become big problems.

This is NASA’s Apollo Challenger Columbia Lessons Learned Program. (ACCLLP)

Never heard of it? That’s understandable, given its newness. But I hope that as it matures and gains traction within NASA, its value will be realized and its lessons made available even outside NASA organizations. The lessons NASA learned the hard way are widely applicable. Think about the value of open communications vs. stifled debate as just one example.

So what is the ACCLLP?

It’s a fully-funded and staffed NASA HQ initiative to teach all NASA and supporting organizations about the causes—and especially the common causes—of the three fatal accidents. And obviously, as the causes are discussed, the more important topic of their lessons learned are emphasized.

Back to open communications: Challenger and her crew were victims of stifled debate as surely as flawed hardware. Improvements to the hardware proved easier to implement than the organizational and cultural corrections based on that tough lesson learned. NASA improved its communications and management practices, but they eroded over the 17 years between Challenger and Columbia. We fell back into some bad habits: over-confidence, less hunger for fully understanding the potential for minor issues becoming major ones, and to a degree stifled debate. Columbia was victim to those practices just as surely as Challenger.

How does ACCLLP work and how can it help?

Mike Ciannilli (who I fondly call “Chachi”) is a former member of the shuttle launch team and one of the people who conducted aerial searches for Columbia’s debris. He created, developed, and now manages the ACCLLP for NASA and is 100% dedicated to its success. Mike has developed lessons learned programs and “teaches” them to the workforce at KSC and other centers. He routinely conducts tours of the Columbia Preservation room in the Vehicle Assembly Building each week. These reach a wide array of folks across all NASA Centers and missions, including civil servants, contractors along with the brand new commercial crew workforce—even NASA Space Act partners such as NASCAR. Mike ensures that these tours powerfully emphasize the lessons of the past and present, and their direct impact to the future.

Ciannilli with Columbia
Mike Ciannilli with his beloved Columbia (photo courtesy Mike Ciannilli)

Mike is also creating the Agency’s largest lessons learned library with teaching materials from NASA and other organizations. It is the agency’s best advocate to not ignore or forget the past, but rather to learn from it.

A traveling road show took some key pieces of Columbia’s debris to the NASA Centers over a decade ago. Word has it that Chachi is creating a brand new and really cool concept to bring Columbia herself to the masses as we speak. Fireside chats featuring ‘graybeards’ talking about Apollo 1, Challenger, Columbia have been held to full houses and garnering outstanding reviews. And other concepts to discuss lessons learned are being developed to help spread the word, including videos that would be made widely available. Mike is overloaded with requests, and loves it!

So if you’re currently involved in manned spaceflight (or unmanned spaceflight for that matter) and want to know more about this extremely positive outcome of NASA’s three fatal accidents, look up Mike. He’s based at KSC and would love to have you and your organization exposed to his work. I promise you’ll not only be impressed with his enthusiasm, but the lessons learned will be applicable and valuable for your people. There’s no doubt.

The Columbia Debris Loan Program

It’s been a while since I posted a new blog. No excuses, just apologies. Hurricane Irma certainly did a number on Florida, and all us residents are still dealing with the aftermath.

On a recent visit to the Columbia Preservation Room in the VAB (to show the debris to some ULA employees), Mike Ciannilli updated us on the continuing success of the debris loan program with some truly amazing statistics. I want to share his success with you here, but first please allow me some personal reflections.

Leinbach Kennedy Thurston unveil plaque 02-01-04
From left, Mike Leinbach, KSC Center Director Jim Kennedy, and Scott Thurston unveil the plaque commemorating the Columbia PReservation Office on January 29, 2004. (NASA photo)

When the reconstruction team proposed studying Columbia vs burying it (à la Challenger), we could not possibly have dreamed how successful and inspiring the outcome would be. With Administrator O’Keefe’s full support and encouragement, Scott Thurston crafted an in-depth concept for the program, wrote and released a Request for Information to industry to judge interest—and the rest, as they say, is history. THANKS, Scott.

Melroy and Mangiacapra 02-01-04
Astronaut Pam Melroy, who led the crew module reconstruction effort, with Amy Mangiacapra at the dedication of the Columbia Preservation Office on January 29, 2004. (NASA photo)

Once we knew definitively studying the debris was a good idea, the Columbia Preservation Office was officially dedicated (on the first anniversary of the accident) in its new home on the 16th floor of A Tower of the VAB. United Space Alliance’s Amy Mangiacapra was the first curator and held the position for 10 years. Alone, she cared for the debris, collected pieces requested for study, managed the room, escorted visitors, dealt with ceiling leaks, swept the floors, and did everything/anything required. She was Columbia’s caretaker, and she did it in a manner beyond what she (and we) considered a job. Columbia was her “work child”. Amazing. THANKS, Amy.

NASA created a full-time position for the office in 2014. Mike Ciannilli became the first NASA curator, and by any measure, is the perfect person to take care of Columbia following Amy. (As with the astronauts, we like to give each other nicknames. Because Mike bears a resemblance to “Chachi” Happy Days, we lovingly refer to him as “Chachi” or “Chach.”)

IMG_1144
Mike Ciannilli at the entrance to the Columbia Preservation Office in the VAB. (Jonathan Ward photo)

Not only does Chach administer the debris loan program, but under his leadership and that of KSC Center Director Bob Cabana, the Forever Remembered memorial was opened in the Atlantis building at the KSC Visitor Complex. Columbia’s forward window frames are in a display case for everyone to see and contemplate. They also got the Challenger families to embrace the concept, with the large sidewall piece of Challenger now occupying an adjacent case. Moreover, with the vision of the greater good that can come from studying past failures, in 2016 Mike created the “Apollo Challenger Columbia Lessons Learned Program,” bringing those hard-taught lessons to the workforce and others in hopes they won’t be repeated ever again. GREAT JOB, Chachi.

Finally, the statistics Chach and all of us are so proud to share: To date some 260 pieces of Columbia have been lent to academia and industry for study. As I write this, 12 pieces weighing over 1000 pounds are being studied to advance the understanding in how different materials and structures behave when subjected to the extreme conditions of hypersonic re-entry. And of particular pride, there are three individuals who used Columbia in their PhD dissertations in achieving the highest scholastic degrees in engineering and material science. That’s what I call success!!!!!!

In a very real sense Columbia continues her mission….

East Texas Comes to Kennedy Space Center

On August 12, 2003, Roger and Belinda Gay came to Kennedy Space Center from Hemphill, Texas. It was an opportunity for NASA to thank them for their overwhelming service in the recovery of Columbia and her crew.

When Columbia broke up over East Texas on February 1, 2003, the remains of her crew came to Earth in Sabine County, as did much of the debris from the crew module and the forward end of the orbiter. The population of the small town of Hemphill in Sabine County tripled overnight, as thousands of people came to town to search for the crew. The sudden influx of people was far more than the few restaurants and motels in town could accommodate.

Roger Gay was the commander of Hemphill’s Veterans of Foreign Wars (VFW) post, and his wife Belinda was chair of the VFW Ladies Auxiliary. On the day of the accident, the local incident command team asked Roger if the VFW hall could provide some sandwiches for the searchers. He quickly became overwhelmed as the number of searchers skyrocketed. He asked his wife Belinda, who had been helping search the woods for Columbia‘s crew, to coordinate efforts to help feed and support the searchers.

Over the next several days, Belinda made hundreds of phone calls to ask the people of Sabine County and the neighboring communities for help. The outpouring of support was the stuff of which legends are made, and we talk about it at length in our book. All told, the community provided and served somewhere between 30,000 and 60,000 meals to the search teams in Sabine County, at no cost to the taxpayer. The people of Sabine County also invited searchers to stay at their homes, did their laundry, bought them dry socks…the list goes on. Strong bonds were formed between the searchers and the people of the community.

Belinda knew that something of tremendous significance had happened in that time. “I can’t explain it except to say that we witnessed a miracle in action,” she later told Spaceport News. She felt called to preserve the memory of Columbia‘s crew, the two recovery workers who died in a helicopter crash, and the good works of the people of East Texas. Before the summer even started, she and her friend Marsha Cooper from the US Forest Service began investigating options for creating a memorial park in Sabine County.

NASA invited the Gays to visit Kennedy Space Center that summer. On August 12, they visited one of the Orbiter Processing Facilities and met some of the workers who had prepared Columbia for her last mission. Then they toured the hangar where work on reconstructing Columbia‘s debris was wrapping up.

Belinda told Spaceport News, “We needed to come here. Seeing the hangar was a very emotional experience and gave us some sense of closure.”

Gays visit reconstruction hangar
The Gays visit the Reconstruction Hangar on August 12, 2003. From left, Roger Gay, his son Chad, daughter Andrea, wife Belinda, and Belinda’s cousin Milt Watts. (Spaceport News, September 5, 2003)

Sharing the Story at Spacefest VIII

Last month, I was privileged to be able to speak at Spacefest VIII in Tucson, Arizona about the recovery and reconstruction of Columbia.

For those of you who haven’t been able to attend a Spacefest, it’s an incredible experience. You’ll meet Gemini, Apollo, and Space Shuttle astronauts, planetary scientists, futurists, historians, artists, authors, and hundreds of everyday people who are enthused by space exploration. The wonderful people at Novaspace make this an experience you’ll never forget.

As the co-author of the upcoming book on the Columbia accident, I was invited to speak about the events of 2003. Joining me on the dais was astronaut Jerry Ross, who shared his first-hand accounts of working with the crew and in the search for the vehicle’s debris after the accident, as well as the near-miss he had on STS-27—the most heavily-damaged spacecraft ever to return safely.

I recorded the audio from the presentation and from the ensuing question-and-answer period. I’ve since incorporated a few more images and some video editing to help make the photos tell the story even more clearly. Jerry Ross graciously agreed to allow me to include his commentary in this video.

Here’s the link to the talk on YouTube.

I am NOT a practitioner of “Death by PowerPoint.” You’ll need to have the audio turned on as you watch this presentation, as there are no bullet-point slides—none. It’s all photos and a few maps, which illustrate the story I tell.

The video is one hour long. I hope you’ll enjoy it and learn from what one audience member called “a moving and surprisingly inspirational presentation”!

Jonathan and Jerry q and a
Jonathan Ward and Jerry Ross answer audience questions at Spacefest VIII. (Photo by Brad McKinnon)

The Smoking Gun

The exclamation point that provided closure to the Columbia accident investigation was independent of the analysis of Columbia‘s debris and its data recorder.

Two days after the February 1, 2003 accident, the NASA Accident Investigation Team contacted the Southwest Research Institute (SwRI) near San Antonio for assistance in the accident investigation. SwRI had conducted previous studies for NASA on the effects of impacts of much smaller pieces of foam, cork insulation, and ice on shuttle tiles. NASA wanted incontrovertible proof that foam from the external tank was capable of inflicting mortal damage on the shuttle’s thermal protection system.

That foam could damage the wing seemed counterintuitive on many levels. How could a piece of lightweight insulation— about the density of Styrofoam and weighing less than two pounds—fall off the tank and cause that kind of damage? And wasn’t it traveling about the same speed as the shuttle?

In fact, analysis showed there was a significant velocity difference between the shuttle and the foam at the time of impact. NASA estimated that the shuttle was traveling faster than 1,500 mph—and accelerating—when the foam fell off the tank. After falling off, the foam immediately and rapidly decelerated due to air resistance. The block slowed to about 1,000 mph in the 0.2 seconds between when it came off the tank and when the shuttle’s wing impacted the foam. The relative difference in speeds between the shuttle and foam was therefore more than 500 mph.

The piece of foam that struck Columbia was four hundred times larger than the pieces tested previously by SwRI. Using a special compressed air cannon, SwRI planned to simulate the collision by firing foam blocks at more than 500 mph into samples of shuttle tiles and wing leading edge panels. High-speed cameras photographed the test firings and impacts, and over two hundred sensors measured the effects of the collisions.

By the time the equipment and procedures were ready for the first test on the landing gear door, the investigation had already narrowed its focus to the wing’s leading edge as the impact area. SwRI ran its test anyway using a landing gear door—one borrowed from Enterprise and subsequently covered with silica tiles—to check out the test equipment and processes. As expected, a grazing impact of foam, akin to what would have occurred in flight had the foam hit the underside of the wing, caused only minor damage to the tiles on the landing gear door.

Space shuttle wing leading edge panels are large, expensive, and made to order. The reinforced carbon-carbon (RCC) material also wears and becomes more brittle over time, so SwRI could not use newly manufactured panels to get an accurate assessment of potential damage in its impact tests. The test panels would have to come from the wings of Discovery and Atlantis, the two orbiters that had flown about as many times as Columbia.

NASA decided to check out the test process first using Fiberglas leading edge wing panels from Enterprise, which was not designed to fly in space. Several test shots at Enterprise’s Fiberglas panels—which were stronger than the RCC panels on the flightworthy shuttles—produced scuff marks from the foam blocks, but no breakage. After getting its process and equipment calibrated, SwRI was now ready to try the tests with the space-flown RCC panels.

First, a foam block was fired at panel 6 from Discovery. The impact created a crack nearly six inches long in a rib supporting the leading edge, and it moved the panel enough to create a small gap in the T-seal between panels 6 and 7. This test proved that foam could damage the RCC. However, the damage incurred in this test would not have been severe enough to create the burn-through seen on Columbia. NASA estimated a hole of at least ten inches in diameter would have been needed for the wing to ingest a plasma stream large enough to create the damage shown in Columbia’s debris.

The next test target was panel 8, which had flown twenty-six times on Atlantis. Evidence from the reconstructed debris and the OEX recorder indicated that panel 8 was the probable site of the impact on Columbia’s wing.

At the test on Monday, July 7, 2003 the impact from the foam block blew a hole through the panel about sixteen inches by sixteen inches across, created several other cracks, and caused the T-seal to fail between panels 8 and 9. This was entirely consistent with the type of damage that caused Columbia’s demise.

Witnesses were incredulous, but the evidence was incontrovertible. NASA now had the smoking gun matching the fatal wound on Columbia. The test silenced lingering doubts that a foam strike alone was sufficient to damage the wing and doom the ship.

This text in this section is excerpted from the book “Bringing Columbia Home,” (c) 2017 by Mike Leinbach and Jonathan H. Ward. Video material is from NASA.

Columbia’s Reconstructed Debris Tells a Compelling Story

Throughout February, March, and April of 2003, truckloads of Columbia’s debris retrieved in East Texas arrived at the reconstruction hangar at Kennedy Space Center. In the first month or so, several truckloads arrived every week. By April, those deliveries were beginning to tail off as searchers completed clearing the debris field.

Workers in the field knew that NASA was conducting important analyses on the material they’d found and shipped to KSC, but they had no concept of the scope of the operation until they saw the reconstruction hangar themselves. NASA’s Mike Ciannilli (who now runs NASA’s Columbia Recovery Office and the Apollo 1, Challenger, and Columbia Lessons Learned Program) worked as an aerial spotter in East Texas during the recovery period. He said, “We had no clue what was going on at KSC. The first time I went to the hangar, I was blown out of the water. I was just mesmerized by it.”

By the end of April, the debris had begun to tell a very clear story about Columbia’s demise. Almost all of the debris showed the effects of extreme heat, oxidation, and mechanical stress to varying degrees. But what damage happened before the ship broke apart, and what happened afterward? Painstaking forensic analysis was required to gradually tease apart the sequence of the accident.

Tile Tables

Reconstruction workers initially used a computer graphics package (originally developed to track the process of waterproofing the tiles during launch processing) to plot which of the insulating tiles had been recovered from Columbia’s wings. It quickly became obvious that the software was inadequate to provide the information needed for the forensic analysis. Which tiles were damaged? How were they damaged? Were there larger-scale patterns of burns, pitting, or other damage?

The solution was to lay the tiles out on a large, elevated table on which was drawn the outline of the wing and the location and part number of every single one of the 2,800 silica tiles on the left wing. As tiles were recovered and identified (sometimes based only on a few millimeters of thickness), engineers lay them in place on the table.

Patterns quickly emerged.

Micklos tile table
Thermal protection system lead engineer Ann Micklos places a tile on the left wing tile table. (Photo courtesy Ann Micklos)

The carrier panel tiles, which formed the closeout between the leading edge and the rest of the wing, showed where the breach in the wing occurred. The carrier panel tiles behind Panel 9 on the leading edge were slumped and coated with metallic deposits from structures in the interior of the wing.

Burn patterns showed that plasma entering the breach in the wing at thousands of miles per hour pressurized the wing cavity and blew out vents in the upper and lower surfaces of the wing.

As the hot plasma entered and melted its way through the wing’s interior, its heat caused the adhesive that held the tiles onto the wing surface to fail. Those tiles—designed to take heat from the outside surfaces, not from where they were glued onto the ship—peeled off of the wing.

The wing was clearly baking from the inside out.

Finally, the tiles found farthest west in the debris field—those which had come off the earliest in the moments leading to the breakup, as the shuttle was flying from west to east across Texas—were all from the left wing, and all from the area behind leading edge panels 8 and 9.

Leading Edge Frames

Boeing’s Mike Gordon and NASA structures engineer Lyle Davis spent many long hours examining the recovered pieces of the reinforced carbon-carbon (RCC) panels on Columbia’s wing’s leading edges. These pieces ranged in size from larger than one square foot to smaller than a thumbnail.

Since the RCC panels were U-shaped and several feet long, it was impractical to lay them out two-dimensionally. Kennedy Space Center’s shops constructed a set of clear Lexan frames that held the pieces of each RCC panel and its underlying structure, allowing people to see in three dimensions what the front edge of the wing looked like.

KSC-03pd-1556 05-14-2003 Leinbach and RCC Lexan media briefing
Columbia reconstruction director Mike Leinbach briefs the media about the wing leading edge displays, May 14, 2003. (NASA photo)

The RCC frames also told a compelling story about the accident. Panels 1 though 7, and from Panel 10 outboard, were fractured from forces after the shuttle disintegrated. Their metallic attachment fittings were still partially intact.

However, at Panels 8 and 9, no metallic fittings were recovered. The stainless steel support structure—which melts at 2,500°F—had melted away and was deposited as slag onto the interior of adjacent panels on the wing. The retrieved pieces of RCC from Panels 8 and 9 were knife-edged and heavily eroded, providing evidence that plasma at over 3,000°F was acting as a blowtorch at high pressure on those panels for a prolonged period. This was the only place on the wing where this pattern was observed.

Materials scientists analyzed the cross-section of the slag deposits inside the left wing panels. This analysis showed what the metals were (insulating blankets, aluminum from wing spars, Inconel and steel from fittings, etc.) and how the deposits were laid down. It clearly told the story of the wing’s failure in time sequence.

As with the tiles, the location of the leading edge components in the debris field also gave the sequence of the accident. The leading edge components from the middle to the tip of the left wing (Panels 8 to 22) were found farthest west, between Dallas and Palestine. Pieces of the leading edge of the left wing closest to the shuttle’s fuselage (Panels 1 to 7) were found farther east, between Palestine and Nacogdoches. The right wing leading edge pieces were all found farther east. This provided evidence that the left wing failed before the right wing, with the most likely point of failure being at Panels 8 and 9.

Proof Positive

NASA now had the evidence to prove how Columbia broke up.

NASA announced in early May that only one single failure scenario explained all of the evidence contained in the debris, the OEX recorder, and the telemetry received in Houston. Something—most likely the piece of foam from the external tank during ascent to orbit—caused a breach in the leading edge of the left wing, allowing plasma to penetrate the wing during reentry and erode it from the inside out.

Whether the foam actually punctured the RCC at the leading edge, or whether it pushed the spacers apart and created a gap in the panels, will never be conclusively known.

The last truckload of debris arrived at the reconstruction hangar on May 6. Wreckage that had been strewn over thousands of square miles of forest and field—pieces that had been carefully collected by tens of thousands of searchers working in tough conditions for three months—was all here in this one place. The twisted, burned, and shattered debris had told an important story, one that would have been impossible to write without the collective efforts of so many dedicated people in East Texas and Louisiana and of the nation’s wildland firefighting teams.

“Each piece was evidence of how hard Columbia fought to come home to us,” astronaut Pam Melroy said. “We saw every recovered piece as a victory.” Every piece of debris moved the reconstruction team closer to their goal: We will find the problem, fix it, and move forward in their honor.

[Portions excerpted from “Bringing Columbia Home,” © 2017 by Mike Leinbach and Jonathan Ward.]

The Rescue Scenario

Shortly after the accident, during the third week in February 2003, a few of us contemplated if a rescue mission of Columbia’s crew could have been conducted. If it could, what were the chances of success?

Under the guidance of Shuttle Program managers we were asked to quietly study it. We were to conduct our studies in part to satisfy our own curiosity and in part knowing the Columbia Accident Investigation Board (CAIB) would no doubt ask us one day. The Flight Directors at Johnson Space Center (JSC) would do the on-orbit assessment, and I would do the Kennedy Space Center (KSC) operations assessment. The two would combine to answer the unfriendly—but necessary—question.

My part concluded that from a pure timing perspective, a rescue was theoretically possible. The result from JSC was the same: theoretically possible. But both required unrealistic assumptions and actions that were not consistent with the mission being flown, or usual program priorities or objectives.

Rescue would have involved having us launch Atlantis—next in line to fly—as soon as possible, rendezvous with Columbia, transfer the astronauts via some sort of tether to Atlantis, and come home. The crew of seven from Columbia would be aboard Atlantis with her rescue crew of four. Four of the crew members would have to ride home strapped to the deck; there were only seven seats on the orbiter. Columbia herself would then be guided to a ditching in the ocean.

At the time of the accident, Atlantis was almost ready to roll out of the Orbiter Processing Facility to the VAB. A full-court press to expedite that and get to the launch pad would be required. The Pad “flow” would be truncated to only those tasks required, the rest omitted to save time. Things like the Terminal Countdown Demonstration Test and cryogenic loading simulation would be eliminated. Other required tasks would be done three shifts per day, seven days per week. Meanwhile, the rescue scenario flight plan would be developed at JSC.

Assuming no significant glitches, launch could have been as early as February 11. This also assumed no significant processing or launch delays occurred, including weather. That also assumed that Atlantis would not have her remote manipulator arm installed, which was almost certainly needed for a rescue mission. Installing the arm would have pushed the earliest launch date to February 13.

If everything went according to plan—and that was a BIG if—the rescue would have happened two days before Columbia‘s consumables ran out. Columbia would have been in orbit for almost a full month by then, two weeks longer than any previous Shuttle mission.

The key to the entire study was that consumables on board Columbia needed to preserved as much as possible, extending Columbia’s time on orbit awaiting Atlantis’ arrival. Food, water, etc. all needed to be stretched to the max. The limiting commodity however were the lithium hydroxide (LiOH) canisters needed to scrub carbon dioxide from the cabin air. Not food, not water, not power, but the ability to provide breathable air for Columbia’s crew.

The assumption made for the study was that we needed to put the crew on alert for extending LiOH no later than Day 4 of the mission. The crew would have had to go into a very low activity mode to keep their respiration as low as possible. This would have had the effect of terminating the mission’s objectives, effectively ending the reason for the mission. To do this would have been one of the unrealistic moves required. AND, to even get to this posture would have required either proof that the Orbiter was fatally damaged by that day, or assuming so. That was another unrealistic assumption, since the request for additional imagery didn’t occur until Day 6 of the mission, by which time it would already have been too late to conserve the consumables.

But when the two studies were combined, we saw that it would have been technically possible to rescue the crew. That’s the cold, data-driven answer. The truth is that the assumptions I mentioned above, and a few others, would have required extraordinary efforts in both ground and mission operations AND management decision making while we were lacking definitive damage information. All this would have been far outside the normal Shuttle practices at the time.

It should also be noted that the decision to actually launch the rescue mission would have been an extraordinary thing in and of itself. Would we commit a crew of four on Atlantis to rescue Columbia’s, crew possibly facing the same damaging foam loss during its launch? A tough decision to say the least, bigger than NASA alone could make. I believe the President would have had a role in that decision.

But it never got to the point that we’d find out.

No rescue mission was ever contemplated during Columbia’s time on orbit, let alone one early enough to give it a fighting chance of success. We just didn’t have the evidence to support making such a decision, and there was no realistic way in which we could have had that evidence by the time that decision needed to be made.

The CAIB asked us about the scenario in early May 2003. Admiral Gehman, a superior leader, intentionally waited to ask the question until some of the raw emotions had time to subside a little.

When we saw the analyses, there was no grumbling, but there was grief. We couldn’t save the ship. Columbia was doomed, no matter what. Maybe we could have saved the crew. But there were so many what-ifs and assumptions, so many things that had to go completely differently from the very first hours of the mission. Would it have been successful? I don’t know. But we never even had the chance to try.

As much as it hurt people to think about the remote possibility of saving Columbia’s crew, the study helped prompt discussions on how to save a future crew of a damaged shuttle. The studies led to the safe-haven scenario, in which damaged Orbiters could dock at the International Space Station to enable the crews to wait there for a later rescue mission.

KSC and JSC used the Columbia rescue scenario to design a one-time rescue mission that could back up the final Hubble servicing mission. After the successful completion of STS-121 in July 2006, proving that we’d finally solved the foam-shedding problem, NASA Administrator Mike Griffin formally approved the Hubble servicing mission.

On May 11, 2009 Atlantis was poised for launch to the Hubble from Pad 39A at Kennedy. Standing on Pad 39B two miles to the north was Endeavour, ready to go into orbit if there were any problems with Atlantis. For the first and only time, NASA had two shuttles in launch countdown simultaneously. We were ready to launch Endeavour one day after Atlantis if necessary. Tremendous dedication and work went into getting us to this dual launch posture. Fortunately—like many other things in the space business—this contingency capability was assured but never needed.

Atlantis’s flight went flawlessly, so the rescue mission never flew. Atlantis’ crew successfully prolonged Hubble’s life and upgraded its instrument package.

In a roundabout way, Columbia had once again contributed to the advancement of scientific discovery.

STS-125 and sts-400
On Pad A (foreground), Atlantis awaits launch for the STS-125 Hubble servicing mission, while Endeavour (STS-400) sits on Pad B for a possible rescue mission. (NASA/Troy Cryder)